
Modern Concepts for Avionics Systems Validation Test
Environments1

John T. B. Mayer
Leticia Montaiiez
James A. Roberts
Ricky D. Graves

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 91 109

john.t.mayer@jpl.nasa.gov
8 18-354-4397

Abstract- The Cassini Project is the last of the large inter- customkommercial system testbed for Cassini.
planetary spacecraft missions. The Integration Test
Laboratory (ITL) at the Jet Propulsion Laboratory (JPL) is This paper will present a description of the simulatjon
part of the Cassini Project. This laboratory includes the system and the innovations that were incorporated. ’ An
Attitude Articulation Control Subsystem (AACS) testbed. overview of the SE hardware will be presented but the focus
This environment was used to not only verify and validate will be on the simulation software. This paper will conclude
the AACS but was also used to develop advanced concepts with a discussion on the future innovations that are
and ideas for use in future testbed environments. developing for this area.

The concepts developed for the AACS testbed included the 2. DESCRIPTION OF THE CASSINI AACS SE
use of multiple computers, real-time data collection and real-
time display, internet and the incorporation of This section will present a hardware overview that supports
commercially available components. These concepts the software system i31.
resulted In improved simulation fidelity, repeatable
operation and reduced future operational costs. This paper AACS Hardware Description
will focus on a description of the testbed, lessons learned, The Cassini Support Equipment Software Simulation runs
the innovations used and future directions that will on a multi-processor environment. This type of environment
substantially reduce future testbed costs. allows massive amounts of computations to be performed at

1.
2.
3.
4.
5.
6.

TABLE OF CONTENTS

INTRODUCTION

INNOVATIONS INCORPORATED
LESSONS LEARNED

DESCRJFTION OF THE CASSINI AACS SE

FUTURE DIRECTIONS AND INNOVATIONS
SUMMARY AND CONCLUSIONS

1. INTRODUCTION

The Cassini Attitude and Articulation Control System
(AACS) Support Equipment (SE) software was developed to
exercise and test the AACS flight equipment, flight software
and procedures. This project represents the continued
evolution of testbed technology that started as pure analog
systems, progressing to Space Shuttle’s custom built
testbeds [1,2], the introduction of commercial systems into
the Galileo testbeds, cumulating in a hybrid

greater speeds. Communications between each processor is
performed by way of reflective memory boards (VMIVME-
5550). In order to keep the integrity and time homogeneity
of data in a multi-processor environment, a Blackboard
System [41 was employed.

The SE Software originally ran on thirteen processors.
These processors included five Motorola 68030 and two
SkyBolt processors for the real-time processing, one Sun
Sparc 2 and five IPC’s for the user interface and host
computers. Later we added a H P 725 for archive purposes,
a Silicon Graphics Inc. (SGI) Crimson for graphics
capabilities and a generic PC for collecting bus data.

As these products neared the end of their lifecycle they were
replaced with newer technology. We currently use four
Motorola PowerPC’s (PPC 604) for real-time processing,
one Sun UltraSparc I1 for archive, one Sparc 20 for host
functions and two generic PC’s for graphics and bus

1 U.S. Government work not protected by U.S. copyright

mailto:john.t.mayer@jpl.nasa.gov

monitoring functions. As a byproduct of the processor processing time consumption. The portion of the software
replacements we were able to reduce the number of that was developed to implement this concept is named the
components and the complexity of the testbed. A prime Blackboard.
example of this is how we were able to go from custom
graphics on the SGI machine and 22K lines of c code, to a The Blackboard can be viewed as a database that is shared
VRML model on a PC using about 500 lines of Java code. among processors in the SE lab. Since each Processor is

physically located in a different chassis in the SE lab an

NEAR REAL-TIME

removable

To
MOS

e"-----

Host Computer

optical - SI Sun S20,
-

E2 256MB,

El

disk

150 MB

-
-

- laser tape

1 3GB HD

printer.
14GB -
tape - SCSI "

terminal =I
" I server I

64 MB,
2 GB HD

S1, S2 - SCSI buses
E 1, E2 - Ethernet buses
FE - Flight Equipment
CDS - Command Data Subsystem
PPS - Power & Propulsion Subsystem
SS - Sun Sensor
SRU - Stellar Reference Unit
IRU - Inertial Reference Unit
RW - Reaction Wheel

REAL-TIME
General Rack

reflective

UO cards

I
I I Simulator Rack

I I I

I I ' VME BUS

I
I
t-
I
I -

I Auxiliary Rack I

I I I I

I 1 VME BUS

I Remote Rack 1
I I

I " RW RW

I

Motorola
MVME

' IRU
+

IRU &

- 2307 I/O cards simulators :-
p-

I I

I VME BUS I 1

1

Figure 1 : Cassini AACS SE Hardware Configuration

Figure 1 shows the hardware configuration presently in use.

AACS SE Software Description

The design of the SE Software is centered about the idea of
responding to change [5]. This idea is based on the fact that
for every change that is detected by the SE Software there is
a specific response. The advantage to this design is that it
leads to a low CPU processing time utilization. A global
polling environment was ruled out because of its high

identical database must exist in each processor's memory. If
any processor changes an entry in the database, the entry
must be updated in every other database that contains the
entry. This will insure that data integrity is keep throughout
the system. Time homogeneity can be also kept using this
same process.

Reflective memory boards are used to implement the
Blackboard concept in the SE Software design. A reflective
memory board exists in each chassis: General Chassis;

Auxiliary Chassis; and Simulator Chassis. Each reflective
memory board broadcasts data to the other reflective
memory boards when a change has been detected. This
process allows each boards memory to consist of a mirror
image of the other boards.

SE Sofrware Description

The SE Software is partitioned into Non-Real-Time and
Real-Time. It runs in both modes simultaneously to yield
enough processing margin for the actual spacecraft
simulation to run in Real-Time. Figure 2 is an overview Of

the SE Software broken down to a task level.

Near-Real-Time SofrYvare

The Near-Real-Time portion of the SE Software provides
the simulation interface for the User. The Near-Real-Time
can initialize, change and communicate to the Real-Time
software via Etherner connections. The Near-Real-Time runs
under the UNIX Operating System and is composed of the
Telemetry Handler, Archive, Command Parser, Display, .
Post Processing, History and Hardcopy data server
functions. The main operations of these tasks are to control

I

u\\ I

I
I
I
I
I
I
I

L

Controller

.
Data File n ask AFC - AACS Flight Computer

CDS - Command Data Subsystem
mu - Inertial Reference Unit
PMS - Propulsion Module Subsystem
PPS - Power Lk Pyrotechnic Subsystem
RW - Reaction Wheel
SRU - Stellar Reference Unit

Figure 2: Cassini AACS SE Software Organization

storage, display and printing of data. The Near-Real-Time
also houses initial loads and data files for the Real-Time
software.

Data transfers in the Near-Real-Time are based on the UNIX
pipeline concept. A pipeline is a collection of pipes between
pairs of processes. A pipe is an open file connecting two
processes. Data that is written into a pipe at one end may be
read from the pipe at the other end. The UNIX system
automatically handles synchronization, scheduling and
buffering of pipes.

Real-Time Software

The Real-Time software performs the core simulation of the
Cassini Spacecraft and environment. Timing is very crucial.
The program execution and data transfers have to be
performed within microseconds of its required time.

Although the Blackboard synchronization is performed via
hardware, the Blackboard database engine is run in real-
time. The Blackboard database is composed of over 2000
records. Each record is composed of many attributes that
identify the data characteristics, how the record is updated,
what functions are performed when the data is modified, and
links to other records.

Data transfer from the Real-Time to the Near-Real-Time is
performed when the data transfer flag for any Blackboard
record is set. When this flag is set the data client retrieves
the data for that particular Blackboard record and passes it
through a datagram socket. The Near-Real-Time program
receives the data. The data is then piped in a distributed
method throughout the Near-Real-Time section.

Operating System

Since the SE Software runs in a multi-processor
environment, an operating system exists for each computer.
The SE Software consists of three different operating
systems: MSDOSTM, UNIX and VXWorksTM. In the
original system an additional operating system, SKYTM, was
used for the dynamics and celestial simulation processors.
PowerPC processors replaced these processors.

Each SUN computer in the testbed houses and runs its own
UNIX operating system. In using the UNIX operating
system, networking by way of TCPAP allows information
and resources to be shared between each Sun Workstation.
The only drawback of the UNIX operating system is that it
does not run fast enough to support real-time testing. The
operating systems that run in real-time in the SE simulation
are VXWorksTM.

Each PowerPC processor runs with its own copy of the
VXWorksTM operating system. These processors run most of
the SE Software which interface with the hardware in the
testbed.

MSDOS is used in the Bus Analyzer Tool (BAT) and
graphics computer. The BAT is dedicated to monitoring
and capturing the 1553 bus traffic for Post-test analysis.
This data is sent to the Archive system via a File Transfer
Protocol (FTP) connection. The graphics computer displays
a Real-Time animation of the spacecraft and its
environment.

Real-Time Dynamics Simulation

The Dynamics Algorithms for Real-Time Simulation
(DARTS) simulator for the Cassini Spacecraft consists of a
central flexible body with a number of articulated rigid-body
appendages. The demanding performance requirements
from the spacecraft control system require the use of a high
fidelity simulator for control system design and testing. The
DARTS algorithm provides a new algorithmic and hardware
approach to the solution of this “hardware-in-the-loop”
simulation problem. It is based upon the efficient spatial
algebra dynamics for flexible multibody systems. A parallel
and vectorized version of this algorithm is implemented on a
low-cost microprocessor computer [6,7]. \

Analysis Tools

The Real-Time analysis tools used for immediate insight
into testbed operation included various custom plotting
tools, flight computer memory read-out decoding, pixel star
scanner display and spacecraft display. Simple
commercially available utilities were also used to quickly
review data. These tools include such things as GREP and
Netscape@ Navigator.

Post-test evaluation analysis tools are used to extract,
evaluate and display data. These tools are commercially
available or freeware tools. These tools range from major
analysis tools such as MathLab, to common business
programs such as Microsoft@ Excel.

3. INNOVATIONS INCORPORATED

The major innovations that were incorporated into the
Cassini AACS SE included centering the system around a
database concept, use of the internet and using an effective
archive system for dissemination of test data and test results.

Database Concept

The test bed is centered on a database processing system.
Inputs, such as equipment inputs, hardware interfaces,
environmental parameters and user commands, are kept in a
relational database with a time oriented archiving system.
Outputs are extracted from the database and sent to flight
equipment and the user. The various simulations, while
performing complicated calculations, in general simply
extract data base items and input values into the database.
User commands and display items are manipulated the same
way. The design and internal workings of the data base
engine coordinate the inputs and outputs. Program
dispatching is based on changed values or exception
conditions. Coupled with a Real-Time clock, which is used

to activate an update cycle, we have developed a fully
functional simulation system utilizing using significant
amounts of Commercial Off The Shelf (COTS) software and
significantly smaller amounts of custom built software.

The data base system also coordinates activities between
multiple computers demonstrating that the various processes
are truly independent. The various computers communicate
via reflective memory, serial UO and local networks.

Use of the Internet

We used the Internet extensively in our data archive system.
The major data used in our test analysis are: 1) the
telemetry stream; 2) commands issued; 3) 1553-bus traffic
and 4) environmental data. All of this data is time-stamped
and collected for a complete run. It is then compressed and
stored on our archive system. The data is then made
available for the test analysts. All of the data is also
available in Real-Time but most issues and final test
acceptance requires a final analysis that cannot be performed
in Real-Time. Once the data has been placed on the archive
system, the analysts access it via the Internet. The analysts
“log on” to the archive web site and by following a simple
Web page interface, they are able to extract the data that is
relevant to the issue or test that they are interested in. This
data is usually downloaded to their respective workstations,
which include Sun Workstations, Apple Macintoshes and
PC’s of all vintages. They then use their desired local tools
to examine the test data. These tools range from high
caliber tools such as LabVIEWTM to common tools such as
Microsoft@ Excel and simple text editors.

Data Archive System

We made making test data available to developers and
analysts one of our primary goals early in development. That
this occurred concurrently with the rise of the web is no
coincidence. The web allowed users of Mac’s, PC’s and Unix
boxes near equal access to the data, problem reports and test
reports.

It is possible to use our archive system’s Website based
tools to look at the data. However, most analysts prefer to
use their own tools with which they are more accustomed to
using and are more specific to their respective tasks at hand.
This is a clear indication that a basic set of tools to gain
primary access the data can be defined for a complete
project but the analysts should select or build their own
analysis tools to solve their specific issues.

The reason for this is that at the beginning of a project, it is
impossible to define all the requirements needed for what
data and how the data should be analyzed. There are just
too many variables to make this possible. By relying on the
individual analysts to select their own tools, the analysts are
more efficient and produce better results. This also
eliminates the bottleneck that a centralized analysis system
would create should upgrades and enhancements be needed

to resolve issues or problems.

Table 1 shows the number of archive data accesses made by
the project personnel for the year 1998. Note that this is
post launch at a time when we reduced the number of
supported testbeds from 3 to 2. This data works out to about
100 accesses/workday. -

Table 1: Archive System Data Accesses

Period Data

Jan 1998 2101
Feb 1998 2332
Mar 1998 2584
Apr 1998 2279
May 1998 2104
Jun 1998 1936
Jul 1998 2227
Aug 1998 1255
Sep 1998 1337
Nov 1998 1489
Nov 1998 1915
Dec 1998 1680

Accesses

Table 2 shows the amount of data that has been archived
during the year 1998. The intervals represent thirty-day
periods. The simulation and telemetry numbers are
uncompressed data bytes; the 1553-bus data numbers
represent bytes of compressed data with an approximate 20
to 1 compression ratio.

Table 2: AACS Archive Data (bytes)

30-Day Telemetry and 1553-Bus Data
Period Environment (compressed)

1 132418332 142723432
2 193355 152 244533122
3 3 17075 199 2865 1 1679
4 249437125 3 17087748
5 181165428 129923737
6 177305306 315628612
7 12641 1562 274394502
8 206154330 4021 14089
9 119562744 251911716
10 375162167 787427171
11 159840857 290101035

4. &SSONS LEARNED

The following advice is highly recommended for future

testbed projects. Some of these lessons were learned from
previous projects and we were glad to have taken the advice.

Get Involved Early In Requirements Definition

Software and hardware engineers need to be involved in
each other’s requirements definition from concept through
delivery. The testbed engineers should also be involved
with the spacecraft or instrument’s requirements. This
lesson goes to the heart of developing an economical
project. By following this rule, we were able to avoid costly
redesigns.

Adhere To Strict Configuration Control

We highly recommend following a rigid configuration
control policy. In most cases it is well worth the expense of
adapting or developing the tools necessary to implement the
policies. With the proper tool, software developers will
follow the configuration controls. In those few cases were
we failed to follow this rule, code was lost or errors were
introduced resulting in added expense.

Continuity of Personnel

We recommend that a core group of developers be
maintained over the life of a project. We seriously suffered
from continual turnover of our dynamics domain experts
costing an estimated additional four man-years of additional
work.

Build and Release Ofen

Plan for the capability to incorporate changes and make
quick deliveries. Plan on making partial or stopgap
deliveries. The Cassini AACS SE software is an evolving
entity. The fidelity of the models and simulators are
continually being tightened. Capabilities based on user
feedback need quick turnaround to provide needed test
functions. It is desirable to be able to make updates where
only one change at a time is delivered. Users tend to lack
confidence in a system where several changes have been
made in a delivery.

Deliver the Development Tools with the System

A software delivery should also include the tools needed to
create the software delivery. Tools evolve at a rapid rate.
Often times there is a need to run an old version of a
software delivery for problem resolution purposes. This
capability can be lost if the toolset originally used has
advanced to where it is no longer backward compatible.

5. FUTURE DIRECTIONS AND INNOVATIONS

The Cassini AACS SE has demonstrated that new
innovations can significantly reduce development costs.
Areas that we are currently considering for future systems
include an enhanced use of the internet, an integrated

upgrade and configuration process, existing COTS software
and ultra-high level system development languages.

Enhanced Use of the Internet

Future evolution of Real-Time simulation systems will
include the use of the Internet. The Internet can be used for
inter-process and inter-computer communication. with our
current system we have demonstrated that a loosely coupled
set of computers and tasks can be combined into one
effective simulation system. With the introduction of the
Internet, it should be possible to organize a set of computers
or web sites to perform the same functions. The obvious
questions that would have to be investigated include the
various time lags involved, security concerns, reliability and
reconfiguration. These issues are not insurmountable. The
possible use of dedicated networks with gateways could
provide the required security and available transmission
bandwidth to make this a reality.

Component Upgrade and Configuration Management

Upgrading of individual components could becdme
transparent to the system thus reducing the required
management and system coordination costs. This could be
achieved with planned backward compatibility. For
example, the individual components in a system would
identify its “version level” and the “version level” of any
required external components or interfaces. So long as that
one maintains backward compatibility, another component
could be upgraded, thus supplying its new version (n) and its
previous versions (n-1, n-2 . .. 1). As a result the new
version would be transparent to its existing interfaces. It is
also reasonable to think about a component interacting with
the rest of the system using multiple previous versions. This
will greatly simplify the upgrade and maintenance issues and
costs that now dominate the industry.

COTS Software

The use of COTS components will probably increase in the
future. Our current system clearly demonstrates that COTS
components can be incorporated into high fidelity systems.
The benefits would include the use of low cost, sometimes
free, development systems, an availability of technical
personnel, reduced maintenance costs, non-obsolesce, and
the ability to execute projects in a geographically dispersed
area. The main benefit would be the ability to incorporate
COTS development systems and tools such as JAVATM,
VxWorks, LINUX and Windows (CE or NT).

There already exists a large array of software that although
was developed with commercial business applications in
mind, can be utilized in a simulation system. It is even
conceivable that something like a spreadsheet application
could be effectively used. The major value of using COTS
is lower initial and long-term costs, larger available
workforce to support the system and commonality with other
systems. The obvious disadvantages involve having less

direct control over the product. This latter issue is
becoming less serious. It is true that if COTS components
are used and one runs into a bug, one does not have the
control to dictate an immediate fix. But this is mitigated by
two factors: 1) with larger numbers of people using a COTS
product, bugs get identified and fixed earlier in a products
life cycle; and 2) usually there are multiple ways of doing
something. So if one approach has a bug there is usually a
less efficient method that can be employed to get around the
problem. Also, in a competitive environment, there may
also be other vendors with competing products that can be
employed to resolve the issue.

Existing Types of COTS Software

What types of COTS could be used? Data base engines,
user interfaces, interpreters and compilers (JAVATM, Basic,
C++, Visual Basic), development environments, support
tools, report generators, spreadsheets, or general device
drivers.

Use of PC’s and the WindowsTM system may also be
possible. We are currently looking at Windows NTTM as a
possible alternative. It seems that the answer is “yes” but
the jury is still out. Certainly, the differences between
Windows NTTM and UNIX are obvious and the political
concerns are also apparent, but the economic concerns favor
a widely used, inexpensive operating system.

Potential Future COTS SofnYare

It appears that we are following a path where the major
. components of a simulation system may all be COTS or

inherited software. The main items left to the specific
projects would consist of device drivers and high level
algorithms. The latter could be developed using high level
visual tools to describe the system. Then automatic source
code generators could be used to create the actual software.
Going one step further, it may even be possible to define the
flight system in an ultra-high level language and then
automatically generate not only the “flight code” used by the
actual system, but also the simulation system software
needed to exercise the flight software.

6. SUMMARY AND CONCLUSIONS

The issues and advancements presented will significantly
reduce the overall costs of future support equipment
simulation systems. Couple the potential economic savings
with the prospect of inheriting or bequeathing to future
projects this simulation infrastructure, the much touted
“faster, better, cheaper” mantra may actually be possible.

REFERENCES

[I] John T. B. Mayer, The Build System - Integration and
Management of Large Sofrware Avionics Systems, presented at
the Space Enhancing Technological Leadership, American
Astronautical Society, 1980 Annual Meeting, October 20-23,
1980.

[2] John T. B. Mayer, The Space Shuffle Vehicle Checkout
Involving Flight Avionics Sofrware, presented at the AlAA
Computers in Aerospace IU Conference, San Diego, CA, October
26-28, 1981.

[31 Ricky Graves, AACS Support Equipment Hardware - Design
Requirements and Description Document, Rev. C, (Internal
Document), Jet Propulsion Laboratory, Pasadena, CA, 1994.

[4] Robert Engelmore and Tony Morgan, Blackboard Systems
(The Insight Series in Art$cial Intelligence), Reading, MA,
Addison-Wesley, 1988.

[5] Leticia Montaiiez, AACS Cassini Support Equipment
SofnYare - Design Requirements and Description Docuntent,
Interoffice Memorandum 3413-96-122 CAS, (Internal
Document), Jet Propulsion Laboratory, Pasadena, CA, 1996.

161 A. Jain and G. K. Man, “Real-Time Dynamics Simulation of
the Cassini Spacecraft Using DARTS. Part I. Functional
Capabilities and the Spatial Algebra Algorithm,” Proceedings of
the Fifh NASARVSFDOD Workshop on Aerospace
Computational Control, Jet Propulsion Laboratory, Pasadena,
CA, 1993.

[7] A. Fijany, J. A. Roberts, A. Jain and G. K. Man, “Real-Time
Dynamics Simulation of the Cassini Spacecraft Using DARTS.
Part II. ParalleWectorized Real-Time Implementation,”
Proceedings of the Fifth NASARVSFDOD Workshop on
Aerospace Computational Control, Jet Propulsion Laboratory,
Pasadena, CA, 1993.

BIOGRAPHY
John Mayer is a Senior Engineer in
the software development and system
integration and test fields. He has
developed jlight and ground sofrware
at the Jet Propulsion Laboratory and
Intermetrics Inc. since the mid-
1970’s. He is presently supporting the
SE upgrade development for the

Cassini Program. He has been involved with the space
shuttle, space station, Galileo, Cassini and GPS. He has a
BSEE and MSEE from Stanford University.

Leticia Montaiiez is a Senior
Engineer in the system integration
and test field. She has been
instrumental to the AACS system
testing for the Galileo and Cassini
projects at the Jet Propulsion
Laboratory since the mid-I 980's.

She is presently responsible for the Integration and Test Lab
for the flight phase of the Cassini Program. She has a BSCS

University, Los Angeles.

James Roberts is a Senior Engineer
in the Real-time software
development field. He has developed
jlight and ground software at the Jet
Propulsion Laboratory and Rockwell
International since the late-1970's.
He recently served as the lead

Software engineer for the SE development for the Cassini
Program. He has been involved with the space shuttle,
Galileo and Cassini programs. He attended California State
Polytechnic University, San Luis Obispo.

Ricky Graves is a Senior Hardware Engineer in the system
integration and test fields. He has developed the hardware
for integration and support test systems since 1985. He
recently served as a SE Hardware Cognizant engineer in
support of the Cassini Program at the Jet Propulsion
Laboratory. He has been involved with the Galileo and
Cassini projects. He has a BSET from California State

. Polytechnic University, Pamona.

